
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Kush, Nishchal, Branagan, Mark, Foo, Ernest, & Ahmed, Ejaz (2014) Poi-
soned GOOSE : exploiting the GOOSE protocol. In Parampali, Udaya &
Welch, Ian (Eds.) Proceedings of Australasian Information Security Con-
ference (ACSW-AISC 2014), Australian Computer Society, Inc., Auckland
University of Technology, Auckland.

This file was downloaded from: http://eprints.qut.edu.au/66227/

c© Copyright 2014, Australian Computer Society, Inc.

This paper appeared at the Australasian Information Security Conference
(ACSW-AISC 2014), Auckland, New Zealand, January 2014. Conferences
in Research and Practice in Information Technology (CRPIT), Vol. 149,
Udaya Parampalli and Ian Welch, Ed. Reproduction for academic, not-for-
profit purposes permitted provided this text is included.

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://eprints.qut.edu.au/view/person/Kush,_Nishchal.html
http://eprints.qut.edu.au/view/person/Branagan,_Mark.html
http://eprints.qut.edu.au/view/person/Foo,_Ernest.html
http://eprints.qut.edu.au/view/person/Ahmed,_Ejaz.html
http://eprints.qut.edu.au/66227/

Poisoned GOOSE: Exploiting the GOOSE Protocol

Nishchal Kush1 Ejaz Ahmed2 Mark Branagan3 Ernest Foo4

Information Security Discipline,
Queensland University of Technology,

Email: {n.kush1, m.branagan3, e.foo4}@qut.edu.au
Email: ejaz9645@gmail.com2

Abstract

This paper presents a vulnerability within the generic
object oriented substation event (GOOSE) communi-
cation protocol. It describes an exploit of the vulner-
ability and proposes a number of attack variants. The
attacks sends GOOSE frames containing higher sta-
tus numbers to the receiving intelligent electronic de-
vice (IED). This prevents legitimate GOOSE frames
from being processed and effectively causes a hijack-
ing of the communication channel, which can be used
to implement a denial–of–service (DoS) or manipulate
the subscriber (unless a status number roll-over oc-
curs). The authors refer to this attack as a poisoning
of the subscriber. A number of GOOSE poisoning at-
tacks are evaluated experimentally on a test bed and
demonstrated to be successful.

Keywords: substations, GOOSE protocol, critical in-
frastructure security

1 Introduction

Generic object oriented substation event (GOOSE)
is a part of the International Electrotechnical Com-
mission (IEC) 61850 (International Electrotechnical
Commission 2005) suite of standards and specifies the
communication of electrical substation events. IEC
61850 is integral to enabling interoperable substation
automation systems (SASs). Interoperable SASs are
a key component of the smart grid. GOOSE is mul-
ticast on the data–link layer and commonly deployed
over fibre-optic or shielded twisted pair cable to relay
event information.

In this work, a vulnerability in the GOOSE pro-
tocol is identified. The handling of status numbers
in GOOSE frames provides the opportunity to imple-
ment attacks. These attacks can be used to hijack
the communication with the subscriber to prevent le-
gitimate GOOSE messages from being processed and
to spoof additional attack traffic to manipulate the
subscriber.

Depending on the functionality of the specific com-
promised subscriber, the impact can be significant.
For example, if the compromised subscriber was for
the operation of electrical protection. Its operations
could be adversely affected, resulting in safety issues,
such as, damage to the electrical network or injury to
humans.

Copyright c©2014, Australian Computer Society, Inc. This pa-
per appeared at the Australasian Information Security Con-
ference (ACSW-AISC 2014), Auckland, New Zealand, January
2014. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 149, Udaya Parampalli and Ian
Welch, Ed. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

The contributions of this paper are the analysis of
the GOOSE protocol to identify vulnerabilities in the
processing algorithm and the implemention of practi-
cal attacks to exploit this vulnerability. The attacks
are presented using a test bed comprising a virtual
publisher, subscriber and attacker, developed in Java.
The attacks were successful in all cases.

The remainder of the paper is structured as fol-
lows; this section presents a brief background and
discussion of the GOOSE protocol. Section 2 sum-
marises the proposed attacks. Section 3 presents the
methodology employed in this research and describes
the experiments performed. Section 4 presents the
results of the experiments. The results are evaluated
and discussed in Section 5. Finally Section 6 con-
cludes the paper.

Background

Since GOOSE is multicast using the data–link layer,
there is no logical address and flow control function-
ality. Thus, there is no support for message au-
thentication. Part 6 of the IEC 62351 (International
Electrotechnical Commission 2007b) standard defines
message security mechanisms for GOOSE. However,
due to the strict time performance requirements of
GOOSE messages “security measures which affect
transmission rates are not acceptable.” (International
Electrotechnical Commission 2007a, p.30)

GOOSE messages allow a sending intelligent elec-
tronic device (IED), a publisher, to multicast user–
configurable state data to receiving IEDs, known as
subscribers. GOOSE is an unacknowledged connec-
tionless communication protocol, in that, the sub-
scribers do not send an acknowledgement to the pub-
lishers. Substation events cause IEDs to transmit
a GOOSE message. GOOSE messages contain a
status number and sequence number amongst other
data. These messages are retransmitted with in-
creasing delay and sequence number until the next
event, which requires the status number to be incre-
mented. Status numbers are intended to provide re-
play protection (International Electrotechnical Com-
mission 2007b). Both the status number (stNum) and
sequence number (sqNum), are represented as 32 bit
unsigned integers, thus having a possible value range
from 0 to 232.

Once a GOOSE frame is received, Algorithm 1, as
derived from the IEC 62351 standard (International
Electrotechnical Commission 2007b), is employed. A
GOOSE frame with a lower status number than that
of the previously received message is not processed
unless there has been a status number roll–over or
time–out.

The following section describes the proposed at-
tacks which exploit a vulnerability in the GOOSE

Algorithm 1: GOOSE processing algorithm

1 previous stNum ← get the previously processed
stNum;

2 message StNum ← get stNum from message;
3 if message StNum 6= previous StNum then

4 if message StNum < previous StNum
AND no stNum roll-over AND no TTL
time-out then

5 discard message;
6 end
7 else if stNum roll-over OR no TTL

time-out then
8 re-establish stNum;
9 end

10 age ← current time-stamp - time-stamp on
message;

11 if | age | > 2 minimum skew then
12 discard message;
13 end
14 else
15 process message;
16 end
17 end
18 else
19 discard message;
20 end

protocol.

2 Proposed Attacks

The hypothesis of this paper is that a malicious
GOOSE message could hijack the communication be-
tween a subscriber and publisher, and could be used
to prevent the subscriber from processing subsequent
legitimate GOOSE messages or to influence the sub-
scriber by forcing it to process fabricated GOOSE
messages. This will be the case where legitimate
GOOSE messages have status numbers equal to or
less than the status number in the fabricated mes-
sage. This attack is referred to, by the authors, as
GOOSE poisoning. Three variants of this attack have
been summarised below;

• High Status Number Attack – The first variant
multicasts a single spoofed GOOSE frame with
a very high status number to a subscriber after
inspecting GOOSE frames. It is expected that
once the spoofed GOOSE frame is processed, any
legitimate GOOSE frames, with status number
equal to or less than this will not be processed
by the subscriber.

• High Rate Flooding Attack – The second vari-
ant, requires the attacker to multicast a range of
spoofed GOOSE messages, with increasing sta-
tus numbers, after inspecting an initial GOOSE
frame. The high rate flooding of spoofed packets
is expected to eventually employ a status num-
ber that is higher than the expected status num-
ber on the subscriber. This variant is best sum-
marised as a status number flooding attack.

• Semantic Attack – The third and final variant,
is a Semantic Attack. This attack is executed
in two phases. The first phase requires the at-
tacker to observe the network traffic and inspect
GOOSE messages to determine the status num-
bers in use and infer the rate of status change.

The second phase requires the attacker to ex-
trapolate an attack rate, which is higher than
the observed rate. Spoofed GOOSE messages
are then multicast at the attack rate with sta-
tus numbers incrementing by one. The attack
traffic is expected to race against legitimate traf-
fic and prevent bonafide GOOSE messages from
being processed by the subscriber.

The three variants aim to exploit the lack of
authentication and confidentiality at the data–link
layer. The lack of authentication enables the spoofed
GOOSE frames to be processed. The lack of confi-
dentiality enables the content of legitimate GOOSE
frames to be read. The attacks are expected to ef-
fectively hijack the communication, and thus the pro-
cessing, of GOOSE messages on the subscriber. In
all three variants the subscriber is forced to process
a higher status number than the status number em-
ployed by the legitimate publisher. As a result the
subscriber does not service legitimate GOOSE frames
and can subsequently be controlled by the attacker.

Attacker Model

Given the nature of the GOOSE protocol, the adver-
sary is assumed to have access to the data–link layer
of the substation local area network (LAN). The at-
tacker model used for the proposed attacks does not
require the adversary to have direct access to the pub-
lisher nor subscriber. Instead the adversary must be
capable of analysing and spoofing GOOSE frames.
The attacker must be able to spoof media access
control (MAC) addresses in order to inject GOOSE
frames that appear to originate from a legitimate pub-
lisher.

The experimental methodology, including the soft-
ware simulation and test bed setup to evaluate the
proposed attacks are described in the following sec-
tion.

3 Methodology

To validate the hypothesis and execute the described
attacks a simple experimental test bed was estab-
lished. The test bed provided a controlled and iso-
lated environment for experimentation. The test bed
was designed to simulate a specific scenario, and em-
ulate the expected network traffic. The simulation
scenario, its implementation, the test bed setup, and
the experiments conducted are discussed below.

3.1 Scenario

Transmission substations usually incorporate transfer
tripping and bus bar protection, along with circuit
breakers and switches. The simulation scenario em-
ployed for the experiments focused on a single circuit
breaker. Starting at t = 0 s the publisher multicasts
GOOSE messages. The initial status number used
was 5891. The multicast message includes a Boolean
indicating a circuit breaker state, and a float repre-
senting a simulated voltage reading on the bus bar. At
t = 25 s, a status change event is simulated to cause
a trip GOOSE message to be multicast, i.e. Boolean
is set to true. The trip event is simulated for 4 s, and
at t = 29 s, the simulated publisher is reverted to its
original state, i.e. Boolean is set to false, until the
simulation terminates at t = 60 s. During the sim-
ulation scenario, the subscriber logs the state of the
circuit breaker to indicate if it’s open or closed, based
on the Boolean value in the GOOSE frame.

The subscriber log file entry included a time stamp
represented as epoch and a string message indicat-
ing the circuit breaker state, the processed frame sta-
tus number, the sequence number, the frame received
epoch, the frame processed epoch and the difference
between the received and processed epoch times. An
excerpt from the log is presented in Figure 1.

3.2 Simulation

A virtual publisher and subscriber were developed in
Java using the jnetpcap software library. The library
is a wrapper for the libpcap library to implement low–
level network data injection. The publisher was de-
signed to multicast GOOSE frames as described in
Section 3.1. A simulation engine was also developed
to control the execution of the publisher. The simula-
tion engine was used as a harness to start and stop the
publisher. The publisher multicasts a GOOSE frame
every 50 ms, and increments the status number every
100 ms. The simulation models a stable environment,
i.e. the frequency and duration of events are regular.
In an unstable environment these events are irregu-
lar depending on environmental conditions. The sub-
scriber was configured to subscribe to the multicast
GOOSE frames from the publisher. The subscriber
implemented the processing algorithm, Algorithm 1,
and was programmed to log the received GOOSE mes-
sages if they were processed. A single attacker was
used to implement the three variants of the attack.
The attacker accepted user input to determine the
attack type.

3.3 Test Bed Setup

The test bed consists of a publisher, a subscriber,
and an attacker connected via a network switch. An
overview of the test bed is presented in Figure 2.

Both, the publisher and subscriber were hosted
on Dell Optiplex 990 desktop machines, with Intel
Core i7-2600 processors running at 3.4Ghz and 8GB
of RAM. The attacking host was a Dell Optiplex 960
desktop machine with Intel Core2 Duo E8400 pro-
cessor running at 3.0Ghz and 4GB of RAM. All net-
work hosts were running the 64–bit version of CentOS
6.3 operating system (OS), and used the same Intel
PRO/1000 network interface card (NIC).

These machines were connected via Fast Ether-
net to a Cisco 2950T managed network switch with
enhanced software image (IOS C2950-I6K2L2Q4-M).
The network switch is intended to emulate the sub-
station bay switch within a substation. The switch
was configured with a monitor port to enable the cap-
ture of ingress and egress traffic of the ports connect-
ing the publisher and subscriber. A separate Broad-
com Tigon3 NIC was used on the subscriber to con-
nect to the monitor port and capture traffic using the
tcpdump utility. The subscriber is also set-up as a
network time protocol (NTP) time server to provide
time synchronisation on the network.

The following section describes the experiments us-
ing the implemented attacks on the test bed.

1360651521968 INFO: XCBR closed 5891 0
1360651521968 1360651521968 0
1360651522092 INFO: XCBR closed 5892 0
1360651522092 1360651522092 0
1360651522218 INFO: XCBR closed 5893 0
1360651522218 1360651522218 0

Figure 1: Excerpt from virtual subscriber log file

Publisher Subscriber

Attacker

Network
Switch

attack traffic

normal traffic

traffic capture

normal and attack traffic

Figure 2: Test bed setup

3.4 Experiments

The proposed attacks as described in Section 2 were
executed in the isolated environment provided by the
test bed. Each experiment was executed indepen-
dently, i.e. the virtual publisher and subscriber are
restarted following each experiment. Before each ex-
periment the network capture packet capture (PCAP)
and log files were cleared. Following each experiment,
the files are extracted and saved for analysis. The
experiments are summarised below;

• No Attack – an experimental control to observe
normal simulated behaviour. In this experiment
no attacks were implemented. The simulation
scenario is executed unhindered. In the control,
the circuit breaker frames were successfully re-
ceived, processed, and logged. The results of this
control were used to determine if attacks were
successful.

• High Status Number Attack – A single fabricated
GOOSE message with status number close to 232

was transmitted. The maximum value was not
used as it would cause a roll–over, instead the
value 232 − 1 was used. Successful poisoning of
the subscriber using any other 32 bit value would
have a probability of 1

232 , while the value used
in the experiment has a probability of success

of 232−2
232 . It was expected that once the fabri-

cated GOOSE frame was processed by the sub-
scriber, the subscriber stopped processing legit-
imate GOOSE messages with lower status num-
bers.

• High Rate Flooding Attack – In the High Rate
Flooding Attack, GOOSE frames are fabricated
with increasing status numbers. In this experi-
ment status number of 5800 was used. This value
was selected due to the limited duration of the ex-
periment. GOOSE frames should be multicast as
rapidly as possible by the attacker. In the case
of the experimental test bed this rate was 1000
frames per second. It was expected that once the
attack traffic started being processed by the sub-
scriber, legitimate traffic with lower status num-
bers would be discarded.

• Semantic Attack – The third and final experi-
ment is described as a Semantic Attack. During
the first phase of the Semantic Attack, the at-
tacker observed three legitimate GOOSE frames
and recorded the highest status number used.
The average inter-frame delay was calculated
based on the observed traffic. In the second
phase of the attack, a lower attack delay was
used to calculate an attack rate. The attacker
then spoofed and multicast attack traffic with in-
creasing status numbers at the calculated attack
rate. As with the High Rate Flooding Attack,

it was expected that once the fabricated frames
were processed, legitimate traffic with lower sta-
tus numbers would be discarded.

The network traffic and subscriber log files were
recorded and analysed for each experiment. The fol-
lowing section presents the experimental results.

4 Results

The results for each experiment comprised the net-
work capture PCAP file and the virtual subscriber
log file. The log file was processed to indicate the
circuit breaker state at various timestamps using a
custom shell script. The captured network traffic
PCAP file was processed using another custom util-
ity (goosestat) written in Java to extract specific
features, such as, the status numbers, sequence num-
bers, payload data, and frame time stamp. An excerpt
from the processed file is presented in Figure 3;

To better understand the results, the concept of
convergence was introduced. Convergence in the con-
text of GOOSE poisoning attack is when the attacker
and the legitimate publisher are transmitting GOOSE
frames with the same status number. Once the at-
tacker exceeds this status number GOOSE poison-
ing can occur. Convergence only occurs if the attack
GOOSE frame rate (λA) is higher than the GOOSE
status number change frame rate (λN) of the legiti-
mate publisher.

A second concept required for understanding ex-
perimental results is sending advantage. Sending ad-
vantage (α) is defined as the difference in the status
numbers employed by the attacker (stNumA) and the
legitimate publisher (stNumN) at the point the at-
tack begins. Let α be some unknown sending advan-
tage that a legitimate publisher has over the attacker,
then time till convergence can be calculated using (1)
once the attack starts.

t =
α

λA − λN
(1)

where:

• t: convergence time in seconds

• α: difference between legitimate and attack sta-
tus numbers (sending advantage)

• λA: attack rate in frames per second

• λN : estimated average normal traffic status num-
ber change rate in frames per second

#
goosestat version 0.2
goosestat -r no-attack.pcap -p
#
frame stNum sqNum payload data timestamp
rtimestamp
#
1 5891 0 0 1360651521966 19388
2 5891 1 0 1360651522028 19450
3 5892 0 0 1360651522091 19513
4 5892 1 0 1360651522154 19576
5 5893 0 0 1360651522217 19639
6 5893 1 0 1360651522279 19701

Figure 3: Except from output of goosestat on PCAP
file

 60

 600

 6000

 60000

 600000

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

T
im

e
til

l c
on

ve
rg

en
ce

 (
m

s)

Attack frame delay (ms)

Attack convergence

Figure 4: Convergence time for simulated scenario

The sending advantage (α) that a legitimate publisher
has over an attacker is variable. Since stNumN =
stNumA +α, in the best case, from the attackers per-
spective, the legitimate status number is equal to the
attackers status number, i.e. α = 0. In the attack-
ers worst case, the legitimate status number, is close

to half the maximum, i.e. α ≈ 232

2 ≈ 231, instead

of α ≈ 232 because of status number roll–over. If
the legitimate sender is at the maximum status num-
ber, then subsequent frames would cause a roll–over of
the status number, thereby rendering the next attack
frame transmission as poisonous. Hence the sending
advantage would become negative.

To estimate the convergence time for the simu-
lated scenario, an average case sending advantage of

α = 231

2 was used. Figure 4 presents time till conver-
gence based on the simulation scenario for the aver-
age case sending advantage where a virtual publisher
simulates a 100 ms inter-frame delay. The figure il-
lustrates varying attack frame delays employed by the
attacker and the expected time till convergence. Con-
sidering the average case, an attacker could converge
upon the status number being employed by the le-
gitimate publisher, and subsequently start poisoning
the subscriber within 6000 ms if using an attack rate
greater than 200 frames per second.

The results obtained from the experiments are dis-
cussed in the following section.

5 Discussion

The success of the attacks were ascertained by com-
paring the attack results with the control results. The
attack was considered successful, when the subscriber
failed to correctly log the circuit breaker state. In
Figures 5,6,7 and 8, the change in the status number
with respect to the simulation time, is plotted on the
y–axis from the PCAP file content. The simulation
time, calculated relative to the first frame, is plotted
on the x-axis. On the y2-axis, the state of the circuit
breaker is plotted from the subscriber log file data.
Again, the simulation time was calculated relative to
the first log entry. A state of 1 meant the circuit
breaker was closed, and 0 indicated it was open.

The scenario employed for the simulation has been
simplified for the purposes of brevity and rapid devel-
opment. As previously described, a stable system was
used in the simulation. Further the convergence cal-
culations employed the average status number change
rates. These simplifications may provide a skewed

5850

5900

5950

6000

6050

6100

6150

6200

6250

6300

6350

6400

 0 10 20 30 40 50 60

 0

 1

 2

S
ta

tu
s

nu
m

be
r

(s
tN

um
)

C
irc

ui
t b

re
ak

er
 s

ta
te

Simulation time (seconds)

Figure 5: Simulation run without attacks

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

 0 10 20 30 40 50 60
 0

 1

 2

St
at

us
 n

um
be

r
(s

tN
um

)

C
ir

cu
it

br
ea

ke
r

st
at

e

Simulation time (seconds)

Figure 6: High Status Number Attack

perception of real GOOSE traffic in an unstable sys-
tem. The results obtained are summarised below;

• No Attack – As illustrated in Figure 5, the control
illustrates the simulation scenario precisely, i.e.
the circuit breaker state is changed to open at t
= 24 s and remains in this state until t = 29 s,
and reverts to a closed state for the remainder of
the simulation.

• High Status Number Attack – In the High Sta-
tus Number Attack, once the attack frame with
the large status number was processed by the
subscriber, all other legitimate GOOSE frames
were discarded. This is illustrated in Figure 6 as
the lack of circuit breaker status logging by the
subscriber. It should be noted that logarithmic
scaling is employed on the y–axis of the figure.
For the purpose of the experiment the attack is
considered a success since the subscriber was un-
able to log the circuit breaker state, from approx-
imately t = 7 s.

• High Rate Flooding Attack – successful conver-
gence during this attack depends on the sending
advantage that the legitimate publisher has over
the attacker. In this attack, a successful conver-
gence is observed. The point of convergence is
illustrated in Figure 7 where the two lines inter-
sect, at approximately t = 8 s. The attack illus-
trated uses an initial attack value of 5,800, i.e.

5800

6000

6200

6400

6600

6800

7000

7200

7400

7600

 0 10 20 30 40 50 60

 0

 1

 2

S
ta

tu
s

nu
m

be
r

(s
tN

um
)

C
irc

ui
t b

re
ak

er
 s

ta
te

Simulation time (seconds)

Figure 7: High Rate Flooding Attack

the advantage α = 91. The line with the higher
gradient represents the attack traffic. There was
no way to distinguish the attack traffic from the
legitimate GOOSE traffic save for the rate, i.e.
the attack traffic rate is higher than the normal
traffic rate. This attack is considered a success,
since the subscriber was unable to detect the trip
message from the legitimate publisher.

• Semantic Attack – In Figure 8 the point of con-
vergence is less obvious than the flooding attack
as in Figure 7. In the Semantic Attack, conver-
gence occurred almost immediately upon start of
the attack, at approximately t = 4 s. As with
the flooding attack, there was no means to distin-
guish the attack traffic from normal traffic based
on features of the traffic, apart from the rate at
which the traffic is generated. The primary ad-
vantage of the Semantic Attack over a High Rate
Flooding Attack, was that the legitimate IED is
extended a lower sending advantage. Since the
attacker is able to observe the network traffic and
thus determine the legitimate status number in
use, the sending advantage is eliminated. An-
other benefit of the Semantic Attack over a High
Rate Flooding Attack was that a lower attack
traffic rate can be used, i.e. an attack traffic rate
that is a close approximation of the average traf-
fic rate. This attack is considered a success since
the subscriber does not the log the trip message
from the legitimate publisher.

In all three attacks the circuit breaker trip was
not logged. The poisoning is successful as long as the
legitimate publisher’s status number is less than the
attack status number.

In the case of the High Status Number Attack
(see Figure 6) the subscriber failed to log the circuit
breaker state. It is expected that this attack would be
successful in both stable and unstable systems. This
attack does not require convergence and only a single
frame is required for the poisoning. The subscriber re-
mains poisoned until the legitimate publisher reaches
a status number higher than the one used in the poi-
soning.

In the High Rate Flooding and Semantic Attacks
(see Figures 7 and 8 respectively) the subscriber
logged an incorrect state based on the spoofed traf-
fic. Since the High Rate Flooding and the Semantic
Attacks rely on convergence, they are suited to sta-
ble environments. The subscriber remains poisoned

5850

5900

5950

6000

6050

6100

6150

6200

6250

6300

6350

6400

 0 10 20 30 40 50 60

 0

 1

 2

S
ta

tu
s

nu
m

be
r

(s
tN

um
)

C
irc

ui
t b

re
ak

er
 s

ta
te

Simulation time (seconds)

Figure 8: Semantic Attack

so long as the attacker continues the attack after con-
vergence. The advantage of the Semantic Attack over
the High Rate Flooding Attack is that convergence
occurs almost immediately.

Related Work

Hoyos et al. (Hoyos et al. 2012), demonstrated an
attack exploiting the GOOSE protocol. The attack
first performed a capture of the network traffic for
GOOSE messages, and subsequently altered the sta-
tus number and flipped any Boolean data i.e. if the
Boolean data was set to true, the attack resets it to
false and vice versa. The GOOSE frame was then
re-transmitted with increasing status numbers. The
tampered data was intended to have an effect on the
subscribing IEDs.

Unlike Hoyos et al., the attacks presented in this
paper do not attempt to manipulate the content of
messages to influence the subscribers actions. Instead,
the attacks proposed in this paper, hijack the commu-
nication channel by exploiting a flaw in the algorithm
used for GOOSE processing. Once the attacks are
successful, legitimate traffic is no longer processed by
the subscriber. The only messages that can be pro-
cessed are those injected by the attacker. Following
the hijacking, continuing to inject attack traffic effec-
tively performs a denial–of–service (DoS) attack by
denying the legitimate sender traffic access to the sub-
scriber. The attacker could also manipulate the ac-
tions of the subscriber by, for example, replaying old
payloads or altering the payload of existing traffic.

There is an existing set of attacks against the
transmission control protocol (TCP) using prediction
of TCP sequence numbers (Morris 1985), for a given
TCP session. GOOSE status numbers share the same
linear properties as TCP sequence numbers. There-
fore, the GOOSE status number makes the GOOSE
protocol vulnerable to similar off-path attacks.

The use of randomisation in the TCP sequence
number selection (Gont & Bellovin 2012) made TCP
sessions more resistant to sequence number estima-
tion. However, the randomisation approach is still
susceptible to man–in–the–middle (MITM) attacks.
The use of randomisation of sequence numbers in
TCP relies on the connection oriented nature of TCP.
As GOOSE is a connectionless protocol, for randomi-
sation to be employed would require out–of–band syn-
chronisation of status numbers. Such out–of–band
synchronisation may be difficult to achieve in the con-
strained substation environment.

6 Conclusion

The work presented in this paper exploits a vulnera-
bility in the GOOSE protocol and presents three vari-
ants of an attack. The vulnerability arises as a result
of predictable status number used in GOOSE mes-
sages and the processing of these messages by the sub-
scriber. The paper demonstrated successful poisoning
of the subscriber which prevented it from processing
legitimate GOOSE messages.

There are a number of areas of future work arising
from this paper. The semantic attack can be fur-
ther developed to be adaptive, the attack rate could
change based on the observed rate of legitimate traffic.
In concert with developing the attack potential detec-
tion techniques also need investigation. Presently the
authors are in the initial phases of implementing the
attacks using actual IEDs rather than simulations.
Preliminary results indicate that vendors may have
an inconsistent interpretation of the IEC 61850 and
IEC 61235 standards. The impact that this may have
on the success or otherwise of the attacks described
in this paper are not yet fully determined. Finally,
the ultimate aim of this work is to develop mitiga-
tion strategies against these attacks. While mitiga-
tion strategies for the attacks have not been identified
in this paper the authors are presently investigating
potential mitigation strategies.

References

Gont, F. & Bellovin, S. M. (2012), ‘Defending against
Sequence Number Attacks’, RFC 6528 (Proposed
Standard).

Hoyos, J., Dehus, M. & Brown, T. X. (2012), Exploit-
ing the GOOSE Protocol: A Practical Attack on
Cyber-infrastructure, in ‘Proceedings of the IEEE
Workshop on Smart Grid Communications: Design
for Performance’, pp. 1508–1513.

International Electrotechnical Commission (2005),
‘IEC 61850:2005 – Communication networks and
systems in substations’.

International Electrotechnical Commission (2007a),
‘IEC 62351-1 : Power Systems Management and
Associated Information Exchange – Data Commu-
nications Security: Part 1 – Communication Net-
work and System Security – Introduction to Secu-
rity Issues’.

International Electrotechnical Commission (2007b),
‘IEC 62351-6 : Power Systems Management and
Associated Information Exchange – Data Commu-
nications Security: Part 6 – Security for IEC 61850’.

Morris, R. T. (1985), ‘A Weakness in the 4.2 BSD
Unix TCP/IP Software’, Computer Science Tech-
nical Report No 117 .

